電渦流傳感器工作原理及廣泛應用
電渦流傳感器能靜態和動態地非接觸、高線性度、高分辨力地測量被測金屬導體距探頭表面的距離。它是一種非接觸的線性化計量工具。電渦流傳感器能準確測量被測體(必須是金屬導體)與探頭端面之間靜態和動態的相對位移變化。電渦流傳感器的原理是,通過電渦流效應的原理,準確測量被測體(必須是金屬導體)與探頭端面的相對位置,其特點是長期工作可靠性好、靈敏度高、抗干擾能力強、非接觸測量、響應速度快、不受油水等介質的影響,常被用于對大型旋轉機械的軸位移、軸振動、軸轉速等參數進行長期實時監測,可以分析出設備的工作狀況和故障原因,有效地對設備進行保護及預維修。
原理
根據法拉第電磁感應原理,塊狀金屬導體置于變化的磁場中或在磁場中作切割磁力線運動時(與金屬是否塊狀無關,且切割不變化的磁場時無渦流),導體內將產生呈渦旋狀的感應電流,此電流叫電渦流,以上現象稱為電渦流效應。而根據電渦流效應制成的傳感器稱為電渦流式傳感器。
前置器中高頻振蕩電流通過延伸電纜流入探頭線圈,在探頭頭部的線圈中產生交變的磁場。當被測金屬體靠近這一磁場,則在此金屬表面產生感應電流,與此同時該電渦流場也產生一個方向與頭部線圈方向相反的交變磁場,由于其反作用,使頭部線圈高頻電流的幅度和相位得到改變(線圈的有效阻抗),這一變化與金屬體磁導率、電導率、線圈的幾何形狀、幾何尺寸、電流頻率以及頭部線圈到金屬導體表面的距離等參數有關。通常假定金屬導體材質均勻且性能是線性和各項同性,則線圈和金屬導體系統的物理性質可由金屬導體的電導率б、磁導率ξ、尺寸因子τ、頭部體線圈與金屬導體表面的距離D、電流強度I和頻率ω參數來描述。則線圈特征阻抗可用Z=F(τ, ξ, б, D, I, ω)函數來表示。通常我們能做到控制τ, ξ, б, I, ω這幾個參數在一定范圍內不變,則線圈的特征阻抗Z就成為距離D的單值函數,雖然它整個函數是一非線性的,其函數特征為“S”型曲線,但可以選取它近似為線性的一段。于此,通過前置器電子線路的處理,將線圈阻抗Z的變化,即頭部體線圈與金屬導體的距離D的變化轉化成電壓或電流的變化。輸出信號的大小隨探頭到被測體表面之間的間距而變化,電渦流傳感器就是根據這一原理實現對金屬物體的位移、振動等參數的測量。
電渦流傳感器現在應用非常的廣泛,尤其是電渦流速度傳感器。他的外形與普通螺栓十分類似,其頭部有扁平的感應線圈,將其固定在不銹鋼螺栓的一端,感應線圈的引線通過螺栓另一端與高頻電纜相連接。
由于電渦流傳感器采用非接觸測量、靈敏度度高、長期工作可靠性好、抗干擾能力強、不受油污、響應速度塊、蒸汽等介質影響,因此常被應用于電力、鋼鐵、石化等行業的大型旋轉機械的軸向位移、擺度、軸振動、轉速等參數的長期實時監測。
電渦流速度傳感器是一種非接觸式的線性化測量工具。它建立在渦流效應的原理上,不但可以實現非接觸地測量物體表面為金屬導體的多種物理量,也可用于無損探傷。并且,它具有長期工作可靠性好、測量范圍寬、靈敏度高、分辨率高、響應速度快、抗干擾力強、不受油污等介質的影響等優點,主要作用于大型旋轉機械在線狀態監測與故障診斷中。
當頭部感應線圈接上高頻電流時,線圈周圍就產生了高頻磁場;如其周圍有金屬導體,便會在金屬表面產生感應電流,即電渦流。根據楞次定律,電渦流產生的電磁場與感應線圈的電磁場方向相反,這兩個磁場相互疊加,改變了感應線圈的阻抗。當金屬導體結構均勻、各向同性且導磁系數、電導率、線圈尺寸因子、勵磁電流、勵磁電流與頻率一定時,感應線圈阻抗的變化是感應線圈與金屬導體之間距離的單值函數。如果導磁系數、電導率、線圈尺寸因子、勵磁電流、勵磁電流圓頻率一定時,增大線圈尺寸,磁場分布范圍將增大,但感應磁場強度的變化幅度變小,反之則相反。因此這種速度傳感器的線性范圍隨感應線圈直徑的增大而加大,而傳感器靈敏度隨感應線圈直徑的增大而減小。
尊敬的用戶:
感謝您關注我們的產品,本公司除了有此產品介紹以外,還有真空度測試儀,SF6微水測試儀,真空開關動特性測試儀,斷路器動特性測試儀,高壓開關動特性測試儀,串聯諧振耐壓試驗裝置,高低壓開關柜通電試驗臺,六相繼電保護測試儀,靜電電壓表,三倍頻發生器,三倍頻感應耐壓裝置,超低頻耐壓試驗裝置,0.1HZ超低頻高壓發生器,硅橡膠高壓線,真空檢測儀,CT伏安特性測試儀,變壓器變比測試儀,礦用雜散電流測試儀,高壓測試儀,變頻介質損耗測試儀等等,您如果對我們的產品有興趣,咨詢。謝謝!